δ-Double Derivations on C*-Algebras

نویسندگان

  • E. Omidvar Tehrani
  • M. Mirzavaziri
چکیده مقاله:

این مقاله چکیده ندارد

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie $^*$-double derivations on Lie $C^*$-algebras

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

متن کامل

lie $^*$-double derivations on lie $c^*$-algebras

a unital $c^*$ -- algebra $mathcal a,$ endowed withthe lie product $[x,y]=xy- yx$ on $mathcal a,$ is called a lie$c^*$ -- algebra. let $mathcal a$ be a lie $c^*$ -- algebra and$g,h:mathcal a to mathcal a$ be $bbb c$ -- linear mappings. a$bbb c$ -- linear mapping $f:mathcal a to mathcal a$ is calleda lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Local higher derivations on C*-algebras are higher derivations

Let $mathfrak{A}$ be a Banach algebra. We say that a sequence ${D_n}_{n=0}^infty$ of continuous operators form $mathfrak{A}$ into $mathfrak{A}$ is a textit{local higher derivation} if to each $ainmathfrak{A}$ there corresponds a continuous higher derivation ${d_{a,n}}_{n=0}^infty$ such that $D_n(a)=d_{a,n}(a)$ for each non-negative integer $n$. We show that if $mathfrak{A}$ is a $C^*$-algebra t...

متن کامل

Product of derivations on C$^*$-algebras

Let $mathfrak{A}$ be an algebra. A linear mapping $delta:mathfrak{A}tomathfrak{A}$ is called a textit{derivation} if $delta(ab)=delta(a)b+adelta(b)$ for each $a,binmathfrak{A}$. Given two derivations $delta$ and $delta'$ on a $C^*$-algebra $mathfrak A$, we prove that there exists a derivation $Delta$ on $mathfrak A$ such that $deltadelta'=Delta^2$ if and only if either $delta'=0$ or $delta=sdel...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 35  شماره No. 1

صفحات  147- 154

تاریخ انتشار 2011-01-20

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023